Code: CE1T1, ME1T1, CS1T1, IT1T1, EE1T1, EC1T1, AE1T1
I B. Tech - I Semester - Regular / Supplementary Examinations December 2016

ENGINEERING MATHEMATICS - I
 (Common for all Branches)

Duration: 3 hours
Max. Marks: 70
PART - A

Answer all the questions. All questions carry equal marks

$$
11 \mathrm{x} 2=22 \mathrm{M}
$$

1.

a) Write any two Integrating Factors and when they are to be used to convert a non exact differential equation to exact differential equation?
b) Obtain the $1^{\text {st }}$ order differential equation that is applicable to Newton's law of cooling.
c) Find the Particular Integral of $\left(D^{3}+1\right) y=\cos x$.
d) Write the Meclaurin's series for the function $f(x)$ in powers of (x-2) upto $3^{\text {rd }}$ degree.
e) What is the nature of Stationary points and Saddle points of a function?
f) What is the area of the circle $r=2$ in the form of a double integral in Cartesian coordinates?
g) Evaluate $\iint x y \mathrm{~d} x \mathrm{~d} y$ where R is bounded by $x=0, y=0, x=$ a, $y=\mathrm{a} . \quad \mathrm{R}$
h) What are Solenoidal and Irrotational vectors?
i) Find the unit normal vector to the surface $x^{2} y=3 z$ at $(1,3,1)$.
j) Obtain the value of $\Gamma(25 / 2)$.
k) What is the significance of least squares method of fitting a curve?
PART - B

Answer any THREE questions. All questions carry equal marks.

$$
3 \times 16=48 \mathrm{M}
$$

2. a) Find the orthogonal trajectories of confocal conics,

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{a^{2}+\lambda}=1, \quad \text { where } \lambda \text { is the parameter. }
$$

b) Solve the differential equation $\frac{d^{2} y}{d x^{2}}+a^{2} y=\sec a x .10 \mathrm{M}$
3. a) Find the minimum value of $x^{2}+y^{2}+z^{2}$ given that $a x+b y+c z=p$.
b) Show that by Taylor's theorem, with lagranges form of reminder for any x,

$$
\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\ldots \ldots+(-1)^{n-1} \frac{x^{2 n-1}}{(2 n-1)!}+(-1)^{n} \frac{x^{2 n}}{(2 n)!} \sin \theta x, \quad 0<\theta<1
$$

4. a) Evaluate $\begin{array}{cccc}1 & \int_{1}^{1-x^{2}} & \sqrt{1-x^{2}-y^{2}} \\ 0 & 0 & \int_{0} & x y z d x d y d z\end{array} \quad 8 \mathrm{M}$
b) By changing to polar coordinates, evaluate $\iint \frac{x^{2} y^{2}}{x^{2}+y^{2}} d x d y$ over the annular region between the circles

$$
x^{2}+y^{2}=a^{2}, x^{2}+y^{2}=b^{2}, b>a .
$$

5. a) Find the constants a, b, c so that the vector

$$
\bar{A}=(x+2 y+a z) \bar{i}+(b x-2 y-z) \bar{j}+(4 x+c y+2 z) \bar{k}
$$

is irrotational. Also find ϕ such that $\bar{A}=\nabla \phi$.
8 M
b) State Stoke's theorem and hence or otherwise evaluate $\int[(x+y) d x+(2 x-z) d y+(y-z) d z]$ over the closed boundary of the triangle with vertices $(0,0,0),(1,0,0)$ and $(1,1,0)$.
6. a) Determine the constants ' a ' and ' b ' by the least squares method such that $y=a e^{b x}$ fits the following data.

x	1	1.2	1.4	1.6
y	40.17	73.196	133.372	243.02

b) Show that $\Gamma(1 / 2)=\sqrt{\pi}$ using β and Γ integrals.

